Definitions: Many-valued Logics

Philosophical Logic 2025/2026

1 Many-valued logics

1.1 Syntax

Definition 1.1 (Language).

$$\phi ::= p | \neg \phi | \phi \lor \phi | \phi \land \phi | \phi \to \phi$$

1.2 Semantics

The basic building block of three-valued systems is the so-called logical matrix, which specifies

- 1. A finite non-empty set of truth values T
- 2. A set $T^+ \subseteq T$ of designated truth values
- 3. For each *n*-place connective, a truth value function $v:T^n\to T.$ If n=0, $v(\cdot)\in T$

Definition 1.2 (Satisfiability). A formula ϕ is satisfiable by a valuation v iff $v(\phi) \in T^+$

Definition 1.3 (Validity). A formula ϕ is valid iff $v(\phi) \in T^+$ for all valuations v.

Definition 1.4 (Entailment). Given a set of formulas Γ and a formula ϕ , we say that Γ entails ϕ and we write $\Gamma \models \phi$ iff for any valuation v s.t. $v(\gamma) \in T^+$ for all $\gamma \in \Gamma$, then $v(\phi) \in T^+$.

1.2.1 Strong Kleene K_3^s

$$T^+ = \{1\}$$

\wedge	1	i	0	V	1	i	0	\rightarrow	1	i	0	\neg	
1	1	i	0	1	1	1	1	1	1	i	0	1	0
								i	1	i	i	i	i
0	0	0	0	0	1	i	0	0	1	1	1	0	1

For truth degrees $x, y \in \{0, \frac{1}{2}, 1\}$:

$$\neg x = 1 - x$$
, $x \land y = \min(x, y)$, $x \lor y = \max(x, y)$, $x \to y = \max(1 - x, y)$

1.2.2 Weak Kleene K_3^w

$$T^+ = \{1\}$$

\wedge	1	i	0	V	1	i	0	\rightarrow	1	i	0	\neg	
1	1	i	0	1	1	i	1	1	1	i	0	1	0
i	i	i	i	i				i	i	i	i	i	i
0	0	i	0	0	1	i	0	0	1	i	1	0	1

1.2.3 Łukasiewicz Ł3

$$T^+ = \{1\}$$

\wedge	1	i	0	V	1	i	0		\rightarrow	1	i	0	\neg	
1	1	i	0	1	1	1	1	-	1	1	i	0	1	0
i	i	i	0	i	1	i	i		i	1	1	i	i	i
0	0	0	0	0	1	i	0		0	1	1	1	0	1

 \neg , \wedge , and \vee as in Strong Kleene.

$$x \to y = \min(1, 1 - x + y)$$

1.2.4 Logic of Paradox

Logic of Paradox (LP) has the same semantic clauses of K_3^s .

$$T^+ = \{1, i\}$$

2 Fuzzy Logic

Extend the chosen three-valued semantic clauses pointwise to the continuum of truth degrees [0,1] (e.g., $\neg x = 1 - x$, $\land = \min$, $\lor = \max$, and either $x \to y = \max(1-x,y)$ or $x \to y = \min(1,1-x+y)$). Valuations now map atoms to [0,1] and extend compositionally.

Definition 2.1 (Truth-preserving consequence). $\Gamma \models_1 \varphi$ *iff for every valuation v,*

$$(\forall \gamma \in \Gamma, \ v(\gamma) = 1) \ \Rightarrow \ v(\varphi) = 1$$

Definition 2.2 (Degree-preserving consequence). $\Gamma \models_{\text{deg}} \varphi$ *iff for every valuation* v *and every threshold* $t \in [0, 1]$,

$$(\forall \gamma \in \Gamma, \ v(\gamma) \ge t) \implies v(\varphi) \ge t$$